

Turbulence in Elastic Media: A New Look at Classic Themes

Xiang Fan¹, P H Diamond¹, Luis Chacon² ¹ University of California, San Diego ² Los Alamos National Laboratory

APS DPP 2017

This research was supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738 and CMTFO.

"Tour Guide"

- This talk is NOT a traditional study of plasma physics.
- It is about a *new* system that is related to systems you are familiar with in plasma physics
- There are many similarities, but some important differences. Watch for these!
- We studied the fundamental physics of cascades and self-organization in this system and in MHD
- It provides a new look at classic themes in plasma physics.

3

Elastic Media? -- What Is the CHNS System?

- Elastic media Fluid with internal DoFs \rightarrow "springiness"
- The Cahn-Hilliard Navier-Stokes (CHNS) system describes <u>phase separation</u> for binary fluid (i.e. <u>Spinodal Decomposition</u>)

Elastic Media? -- What Is the CHNS System?

- How to describe the system: the concentration field
- $\psi(\vec{r},t) \stackrel{\text{\tiny def}}{=} [\rho_A(\vec{r},t) \rho_B(\vec{r},t)]/\rho$: scalar field
- $\psi \in [-1,1]$
- CHNS equations:

$$\begin{aligned} \partial_t \psi + \vec{v} \cdot \nabla \psi &= D \nabla^2 (-\psi + \psi^3 - \xi^2 \nabla^2 \psi) \\ \partial_t \omega + \vec{v} \cdot \nabla \omega &= \frac{\xi^2}{\rho} \vec{B}_{\psi} \cdot \nabla \nabla^2 \psi + \nu \nabla^2 \omega \end{aligned}$$

MHD $\leftarrow \rightarrow$ CHNS

Why Care?

- Useful to examine familiar themes in plasma turbulence from new vantage point
- Some key issues in plasma turbulence:
- 1. Electromagnetics Turbulence
 - CHNS vs 2D MHD: analogous, with interesting differences.
 - Both CHNS and 2D MHD are *elastic* systems
 - Most systems = 2D/Reduced MHD + many linear effects
 - ➢Physics of dual cascades and constrained relaxation → relative importance, selective decay...
 - ➢Physics of wave-eddy interaction effects on nonlinear transfer (i.e. Alfven effect ←→ Kraichnan)

Spinodal Decomposition

 X_{2}

 X_{0}

Why Care?

- 2. Zonal flow formation \rightarrow negative viscosity phenomena
 - ZF can be viewed as a "spinodal decomposition" of momentum.
 - What determines scale?

Why Care?

- 3. "Blobby Turbulence"
 - CHNS is a naturally blobby system of turbulence.
 - What is the role of structure in interaction?
 - How to understand blob coalescence and relation to cascades?
 - How to understand multiple cascades of blobs and energy?

FIG. 4. (Color) Two frames from BES showing 2-D density plots. There is a time difference of 6 μ s between frames. Red indicates high density and blue low density. A structure, marked with a dashed circle and shown in both frames, features poloidal and radial motion.

[J. A. Boedo et.al. 2003]

• CHNS exhibits all of the above, with many new twists

Outline

- A Brief Derivation of the CHNS Model
- 2D CHNS and 2D MHD
- Linear Wave
- Ideal Quadratic Conserved Quantities
- Scales, Ranges, Trends
- Cascades
- Power Laws
- Single Eddy Mixing
- Conclusions

A Brief Derivation of the CHNS Model

- Second order phase transition \rightarrow Landau Theory.
- <u>Order parameter</u>: $\psi(\vec{r},t) \stackrel{\text{\tiny def}}{=} [\rho_A(\vec{r},t) \rho_B(\vec{r},t)]/\rho$

A Brief Derivation of the CHNS Model

- Continuity equation: $\frac{d\psi}{dt} + \nabla \cdot \vec{J} = 0$. Fick's Law: $\vec{J} = -D\nabla\mu$.
- Chemical potential: $\mu = \frac{\delta F(\psi)}{\delta \psi} = -\psi + \psi^3 \xi^2 \nabla^2 \psi$.
- Combining above \rightarrow Cahn Hilliard equation:

$$\frac{d\psi}{dt} = D\nabla^2 \mu = D\nabla^2 (-\psi + \psi^3 - \xi^2 \nabla^2 \psi)$$

• $d_t = \partial_t + \vec{v} \cdot \nabla$. Surface tension: force in Navier-Stokes equation: $\partial_t \vec{v} + \vec{v} \cdot \nabla \vec{v} = -\frac{\nabla p}{\rho} - \psi \nabla \mu + \nu \nabla^2 \vec{v}$

• For incompressible fluid, $\nabla \cdot \vec{v} = 0$.

2D CHNS and 2D MHD

• 2D CHNS Equations:

$$\partial_t \psi + \vec{v} \cdot \nabla \psi = D\nabla^2 (-\psi + \psi^3 - \xi^2 \nabla^2 \psi)$$
$$\partial_t \omega + \vec{v} \cdot \nabla \omega = \frac{\xi^2}{\rho} \vec{B}_{\psi} \cdot \nabla \nabla^2 \psi + \nu \nabla^2 \omega$$

 $-\psi$: Negative diffusion term ψ^3 : Self nonlinear term $-\xi^2 \nabla^2 \psi$: Hyper-diffusion term

With
$$\vec{v} = \hat{\vec{z}} \times \nabla \phi$$
, $\omega = \nabla^2 \phi$, $\vec{B}_{\psi} = \hat{\vec{z}} \times \nabla \psi$, $j_{\psi} = \xi^2 \nabla^2 \psi$.

• 2D MHD Equations:

10/21/17

$$\begin{array}{l} \partial_{t}A + \vec{v} \cdot \nabla A = \eta \nabla^{2} A\\ \partial_{t}\omega + \vec{v} \cdot \nabla \omega = \frac{1}{\mu_{0}\rho} \vec{B} \cdot \nabla \nabla^{2} A + \nu \nabla^{2} \omega \end{array}$$

$$\begin{array}{l} A: \text{ Simple diffusion term} \\ \hline A: \text{ Simple diffusion term} \\ \hline Magnetic Potential & A & \psi\\ Magnetic Field & \mathbf{B} & \mathbf{B}_{\psi}\\ Magnetic Field & \mathbf{B} & \mathbf{B}_{\psi}\\ Current & j & j\psi\\ Diffusivity & \eta & D\\ Interaction strength & \frac{1}{\mu_{0}} & \xi^{2} \end{array}$$

Linear Wave

• CHNS supports linear "elastic" wave:

$$\omega(k) = \pm \sqrt{\frac{\xi^2}{\rho}} \left| \vec{k} \times \vec{B}_{\psi 0} \right| - \frac{1}{2} i(CD + \nu)k^2$$

Where $C \equiv [-1 - 6\psi_0 \nabla^2 \psi_0 / k^2 - 6(\nabla \psi_0)^2 / k^2 - 6\psi_0 \nabla \psi_0 \cdot i\mathbf{k} / k^2 + 3\psi_0^2 + \xi^2 k^2]$

- Akin to capillary wave at phase interface. Propagates <u>only</u> along the interface of the two fluids, where $|\vec{B}_{\psi}| = |\nabla \psi| \neq 0$.
- Analogue of Alfven wave.
- Important differences:

 $\gg \overline{B}_{\psi}$ in CHNS is large only in the interfacial regions.

Elastic wave activity does not fill space.

Ideal Quadratic Conserved Quantities

• 2D MHD

1. Energy

$$E = E^{K} + E^{B} = \int \left(\frac{\nu^{2}}{2} + \frac{B^{2}}{2\mu_{0}}\right) d^{2}x$$

2. Mean Square Magnetic Potential

$$H^A = \int A^2 \, d^2 x$$

3. Cross Helicity

$$H^C = \int \vec{v} \cdot \vec{B} d^2 x$$

• 2D CHNS

1. Energy

$$E = E^{K} + E^{B} = \int \left(\frac{\nu^{2}}{2} + \frac{\xi^{2}B_{\psi}^{2}}{2}\right) d^{2}x$$

2. Mean Square Concentration

$$H^{\psi} = \int \psi^2 \, d^2 x$$

3. Cross Helicity

$$H^C = \int \vec{v} \cdot \vec{B}_{\psi} \, d^2 x$$

Dual cascade expected!

UC San Diego

- Fluid forcing → Fluid straining vs Blob coalescence
- Scale where turbulent straining ~ elastic restoring force (due surface tension): Hinze Scale

$$L_H \sim (\frac{\rho}{\xi})^{-1/3} \epsilon_{\Omega}^{-2/9}$$

Scales, Ranges, Trends

- Elastic range: $L_H < l < L_d$: where elastic effects matter.
- $L_H/L_d \sim (\frac{\rho}{\xi})^{-1/3} \nu^{-1/2} \epsilon_{\Omega}^{-1/18} \rightarrow$ Extent of the elastic range
- $L_H \gg L_d$ required for large elastic range \rightarrow case of interest

Scales, Ranges, Trends

- Key elastic range physics: **Blob coalescence**
- Unforced case: $L(t) \sim t^{2/3}$. (Derivation: $\vec{v} \cdot \nabla \vec{v} \sim \frac{\xi^2}{\rho} \nabla^2 \psi \nabla \psi \Rightarrow \frac{\dot{L}^2}{L} \sim \frac{\sigma}{\rho} \frac{1}{L^2}$)

• Forced case: blob coalescence arrested at Hinze scale L_H .

- $L(t) \sim t^{2/3}$ recovered
- Blob growth arrest observed
- Blob growth saturation scale
 tracks Hinze scale (dashed lines)

Cascades

- Blob coalescence in the elastic range of CHNS is analogous to flux coalescence in MHD.
- Suggests *inverse cascade* of $\langle \psi^2 \rangle$ in CHNS.
- Supported by the statistical mechanics studies (absolute equilibrium distributions).

Cascades

- So, dual cascade:
 - Inverse cascade of $\langle \psi^2 \rangle$
 - *Forward* cascade of *E*
- Inverse cascade of $\langle \psi^2 \rangle$ is formal expression of blob coalescence process \rightarrow generate larger scale structures till limited by straining
- Forward cascade of *E* as usual, as elastic force breaks enstrophy conservation

Cascades

- MHD: weak small scale forcing on A drives inverse cascade
- CHNS: ψ is unforced \rightarrow aggregates naturally
- Both fluxes $\underline{negative} \rightarrow \underline{inverse}$ cascades

Power Laws

- Both systems exhibit $k^{-7/3}$ spectra.
- Inverse cascade of $\langle \psi^2 \rangle$ exhibits same power law scaling, so long as $L_H \gg L_d$, maintaining elastic range: Robust process.

Power Laws

- Derivation of -7/3 power law:
- For MHD, key assumptions:

• Alfvenic equipartition (
$$\rho \langle v^2 \rangle \sim \frac{1}{\mu_0} \langle B^2 \rangle$$
)

- Constant mean square magnetic potential dissipation rate ϵ_{HA} , so $\epsilon_{HA} \sim \frac{H^A}{\tau} \sim (H_k^A)^{\frac{3}{2}} k^{\frac{7}{2}}$.
- Similarly, assume the following for CHNS:
 - Elastic equipartition $(\rho \langle v^2 \rangle \sim \xi^2 \langle B_{\psi}^2 \rangle)$
 - Constant mean square magnetic potential dissipation rate $\epsilon_{H\psi}$, so

 $\epsilon_{H\psi} \sim \frac{H^{\psi}}{\tau} \sim (H_k^{\psi})^{\frac{3}{2}} k^{\frac{7}{2}}.$

More Power Laws

- Kinetic energy spectrum (Surprise!):
- 2D CHNS: $E_k^K \sim k^{-3}$;
- 2D MHD: $E_k^K \sim k^{-3/2}$.
- The -3 power law:

- Closer to enstrophy cascade range scaling, in 2D Hydro turbulence.
- Remarkable departure from expected -3/2 for MHD. Why?
- Why does CHNS $\leftarrow \rightarrow$ MHD correspondence hold well for $\langle \psi^2 \rangle_k \sim \langle A^2 \rangle_k \sim k^{-7/3}$, yet break down drastically for energy?
- *What physics* underpins this surprise?

Interface Packing Matters!

• Need to understand *differences*, as well as similarities, between CHNS and MHD problems.

APS DPP 2017

2D MHD:

➢ Fields pervade system.

2D CHNS:

> Elastic back-reaction is limited to regions of density contrast i.e. $|\vec{B}_{\psi}| = |\nabla \psi| \neq 0$.

As blobs coalesce, interfacial region diminished. 'Active region' of elasticity decays.

Interface Packing Matters!

• Define the *interface packing fraction P*:

$$P = \frac{\text{\# of grid points where } |\vec{B}_{\psi}| > B_{\psi}^{rms}}{\text{\# of total grid points}}$$

$$\succ P$$
 for CHNS decays;

 $\geq P$ for MHD stationary!

• $\partial_t \omega + \vec{v} \cdot \nabla \omega = \frac{\xi^2}{\rho} \vec{B}_{\psi} \cdot \nabla \nabla^2 \psi + \nu \nabla^2 \omega$: small $P \rightarrow$ local back reaction is weak.

• Weak back reaction \rightarrow reduce to 2D hydro

What Are the Lessons?

- Avoid power law tunnel vision!
- <u>**Real space</u>** realization of the flow is necessary to understand key dynamics. Track interfaces and packing fraction *P*.</u>
- One player in dual cascade (i.e. $\langle \psi^2 \rangle$) can modify or constrain the dynamics of the other (i.e. *E*).
- Against conventional wisdom, $\langle \psi^2 \rangle$ inverse cascade due to blob coalescence is the robust nonlinear transfer process in CHNS turbulence.

Broader Implications & Speculations

- What, really, is the essential transfer process in MHD? i.e. theoretical focus is overwhelmingly on Energy
 - Follows fluids, examine energy with forcing in \vec{v} equation
- but
 - Alfven theorem is key constraint in MHD. So, is inverse cascade $\langle A^2 \rangle$ (or $\langle \vec{A} \cdot \vec{B} \rangle$) actually fundamental?
- Can dual cascade processes interact?
- Can 2D MHD turbulence be thought of as flux aggregation vs. fragmentation competition? Is blob dynamics the key?

- Structures are the key \rightarrow need understand how a <u>single eddy</u> interacts with ψ field
- 3 stages, topological change observed. Nontrivial evolution.
- More in poster PP11.00113 Wednesday pm!

- Structures are the key \rightarrow need understand how a <u>single eddy</u> interacts with ψ field
- Mixing of $\nabla \psi$ by a single eddy \rightarrow characteristic time scales?
- Evolution of structure?
- Analogous to flux expulsion in MHD (Weiss, '66)

- 3 stages: (A) the *"jelly roll"* stage, (B) the *topological evolution* stage, and (C) the *target pattern* stage.
- ψ ultimately homogenized in slow time scale, but metastable target patterns formed and merge.

- The bands merge on a time scale long relative to eddy turnover time.
- The 3 stages are reflected in the elastic energy plot.
- The target bands mergers are related to the dips in the target pattern stage.
- The band merger process is similar to the step merger in drift-ZF staircases.

Conclusions

- Turbulent spinodal decomposition dynamics illuminates familiar themes in physics of MHD cascades, relaxation, and selective decay, from a novel perspective
- Theories for MHD can attract interest in other fields outside plasma physics
- Blob coalescence and inverse cascade are dominant processes in CHNS
- Real space configuration and packing of interfaces are essential to physics of dual cascade
- Single eddy mixing can exhibit unexpected nontrivial dynamics